Back to Course
H2 Math Summary Notes
0% Complete
0/0 Steps
-
Pure Mathematics
Inequalities1 Question -
Graphing Techniques7 Questions
-
Transformation of Graphs2 Questions
-
Functions6 Questions
-
APGP & Recurrence Relations6 Questions
-
Sigma Notation6 Questions
-
Techniques of Differentiation2 Questions
-
Applications of Differentiation9 Questions
-
Maclaurin Series2 Questions
-
Techniques of Integration6 Questions
-
Applications of Integration4 Questions
-
Differential Equations2 Questions
-
Vectors11 Questions
-
Complex Numbers6 Questions
-
StatisticsPermutation and Combinations7 Questions
-
Probability5 Questions
-
Discrete Random Variable4 Questions
-
Binomial Distribution5 Questions
-
Normal Distribution7 Questions
-
Sampling and Estimation8 Questions
-
Hypothesis Testing6 Questions
-
Correlation and Linear Regression5 Questions
Lesson 13,
Question 8
In Progress
Unit 13.2 Worked Example 2
Lesson Progress
0% Complete
The line \({{l}_{2}}\) passes through \(A\left( 3,1,-2 \right)\) and is parallel to the direction vector \(\left( \begin{matrix}7 \\15 \\1 \\\end{matrix} \right)\).
\({{l}_{2}}\) intersects \({{l}_{1}}:\mathbf{r}=\left( \begin{matrix} -12 \\ -22 \\ 11 \\\end{matrix} \right)+\lambda \left( \begin{matrix}4 \\ 4 \\ -7 \\\end{matrix} \right);\lambda \in \mathbb{R}\) at \(C\).
Find
(i)
the coordinates of \(C\),
(ii)
the acute angle between \({{l}_{1}}\) and \({{l}_{2}}\),
(iii)
the vector line equation of mirror image of \({{l}_{2}}\) in \({{l}_{1}}\).
Responses