Back to Course
H2 Math Summary Notes
0% Complete
0/0 Steps
-
Pure Mathematics
Unit 1 Inequalities1 Question -
Unit 2 Graphing Techniques7 Questions
-
Unit 3 Transformation of Graphs2 Questions
-
Unit 4 Functions6 Questions
-
Unit 5 APGP & Recurrence Relations6 Questions
-
Unit 6 Sigma Notation6 Questions
-
Unit 7 Techniques of Differentiation2 Questions
-
Unit 8 Applications of Differentiation9 Questions
-
Unit 9 Maclaurin Series2 Questions
-
Unit 10 Techniques of Integration6 Questions
-
Unit 11 Applications of Integration4 Questions
-
Unit 12 Differential Equations2 Questions
-
Unit 13 Vectors11 Questions
-
Unit 14 Complex Numbers6 Questions
-
StatisticsUnit 15 Permutation and Combinations7 Questions
-
Unit 16 Probability5 Questions
-
Unit 17 Discrete Random Variable4 Questions
-
Unit 18 Binomial Distribution5 Questions
-
Unit 19 Normal Distribution7 Questions
-
Unit 20 Sampling and Estimation8 Questions
-
Unit 21 Hypothesis Testing6 Questions
-
Unit 22 Correlation and Linear Regression5 Questions
Lesson 6,
Question 4
In Progress
Worked Example 4
Lesson Progress
0% Complete
(i)
By considering \(\text{f}\left( r \right)-\text{f}\left( r+1 \right)\), where \(\text{f}\left( r \right)=\frac{1}{r}\), find the sum to \(2n\) terms of the series \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+…\)
(ii)
Show that the sum to \(2n\) terms of the series \(\frac{1}{{{2}^{2}}}+\frac{1}{{{3}^{2}}}+\frac{1}{{{4}^{2}}}+\frac{1}{{{5}^{2}}}+…\) is less than \(1\).
Responses