Back to Course
H2 Math Summary Notes
0% Complete
0/0 Steps
-
Pure Mathematics
Unit 1 Inequalities1 Question -
Unit 2 Graphing Techniques7 Questions
-
Unit 3 Transformation of Graphs2 Questions
-
Unit 4 Functions6 Questions
-
Unit 5 APGP & Recurrence Relations6 Questions
-
Unit 6 Sigma Notation6 Questions
-
Unit 7 Techniques of Differentiation2 Questions
-
Unit 8 Applications of Differentiation9 Questions
-
Unit 9 Maclaurin Series2 Questions
-
Unit 10 Techniques of Integration6 Questions
-
Unit 11 Applications of Integration4 Questions
-
Unit 12 Differential Equations2 Questions
-
Unit 13 Vectors11 Questions
-
Unit 14 Complex Numbers6 Questions
-
StatisticsUnit 15 Permutation and Combinations7 Questions
-
Unit 16 Probability5 Questions
-
Unit 17 Discrete Random Variable4 Questions
-
Unit 18 Binomial Distribution5 Questions
-
Unit 19 Normal Distribution7 Questions
-
Unit 20 Sampling and Estimation8 Questions
-
Unit 21 Hypothesis Testing6 Questions
-
Unit 22 Correlation and Linear Regression5 Questions
Lesson 14,
Question 6
In Progress
Worked Example 6
Lesson Progress
0% Complete
Let \({{z}_{1}}=3+2\mathbf{i}\), \({{z}_{2}}=2-5\mathbf{i}\) be two complex numbers.
(i)
Express \({{z}_{1}}\) and \({{z}_{2}}\) on the Argand diagram.
(ii)
Hence, using the same Argand diagram,
(a) \({{z}_{1}}*\),
(b) \({{z}_{1}}+{{z}_{2}}\),
(c) \(\mathbf{i}{{z}_{2}}\).
Responses