Back to Course

H2 Math Summary Notes

0% Complete
0/0 Steps
  1. Pure Mathematics

    Unit 1 Inequalities
    1 Question
  2. Unit 2 Graphing Techniques
    7 Questions
  3. Unit 3 Transformation of Graphs
    2 Questions
  4. Unit 4 Functions
    6 Questions
  5. Unit 5 APGP & Recurrence Relations
    6 Questions
  6. Unit 6 Sigma Notation
    6 Questions
  7. Unit 7 Techniques of Differentiation
    2 Questions
  8. Unit 8 Applications of Differentiation
    9 Questions
  9. Unit 9 Maclaurin Series
    2 Questions
  10. Unit 10 Techniques of Integration
    6 Questions
  11. Unit 11 Applications of Integration
    4 Questions
  12. Unit 12 Differential Equations
    2 Questions
  13. Unit 13 Vectors
    11 Questions
  14. Unit 14 Complex Numbers
    6 Questions
  15. Statistics
    Unit 15 Permutation and Combinations
    7 Questions
  16. Unit 16 Probability
    5 Questions
  17. Unit 17 Discrete Random Variable
    4 Questions
  18. Unit 18 Binomial Distribution
    5 Questions
  19. Unit 19 Normal Distribution
    7 Questions
  20. Unit 20 Sampling and Estimation
    8 Questions
  21. Unit 21 Hypothesis Testing
    6 Questions
  22. Unit 22 Correlation and Linear Regression
    5 Questions
Lesson 13, Question 8
In Progress

Unit 13.2 Worked Example 2

Lesson Progress
0% Complete

The line \({{l}_{2}}\) passes through \(A\left( 3,1,-2 \right)\) and is parallel to the direction vector \(\left( \begin{matrix}7  \\15  \\1  \\\end{matrix} \right)\).

\({{l}_{2}}\) intersects \({{l}_{1}}:\mathbf{r}=\left( \begin{matrix}  -12  \\ -22  \\ 11  \\\end{matrix} \right)+\lambda \left( \begin{matrix}4  \\ 4  \\ -7  \\\end{matrix} \right);\lambda \in \mathbb{R}\) at \(C\).

Find

(i)

the coordinates of \(C\),

(ii)

the acute angle between \({{l}_{1}}\) and \({{l}_{2}}\),

(iii)

the vector line equation of mirror image of \({{l}_{2}}\) in \({{l}_{1}}\). 

Responses