Back to Course
H2 Math Summary Notes
0% Complete
0/0 Steps
-
Pure Mathematics
Unit 1 Inequalities1 Question -
Unit 2 Graphing Techniques7 Questions
-
Unit 3 Transformation of Graphs2 Questions
-
Unit 4 Functions6 Questions
-
Unit 5 APGP & Recurrence Relations6 Questions
-
Unit 6 Sigma Notation6 Questions
-
Unit 7 Techniques of Differentiation2 Questions
-
Unit 8 Applications of Differentiation9 Questions
-
Unit 9 Maclaurin Series2 Questions
-
Unit 10 Techniques of Integration6 Questions
-
Unit 11 Applications of Integration4 Questions
-
Unit 12 Differential Equations2 Questions
-
Unit 13 Vectors11 Questions
-
Unit 14 Complex Numbers6 Questions
-
StatisticsUnit 15 Permutation and Combinations7 Questions
-
Unit 16 Probability5 Questions
-
Unit 17 Discrete Random Variable4 Questions
-
Unit 18 Binomial Distribution5 Questions
-
Unit 19 Normal Distribution7 Questions
-
Unit 20 Sampling and Estimation8 Questions
-
Unit 21 Hypothesis Testing6 Questions
-
Unit 22 Correlation and Linear Regression5 Questions
Lesson 13,
Question 8
In Progress
Unit 13.2 Worked Example 2
Lesson Progress
0% Complete
The line \({{l}_{2}}\) passes through \(A\left( 3,1,-2 \right)\) and is parallel to the direction vector \(\left( \begin{matrix}7 \\15 \\1 \\\end{matrix} \right)\).
\({{l}_{2}}\) intersects \({{l}_{1}}:\mathbf{r}=\left( \begin{matrix} -12 \\ -22 \\ 11 \\\end{matrix} \right)+\lambda \left( \begin{matrix}4 \\ 4 \\ -7 \\\end{matrix} \right);\lambda \in \mathbb{R}\) at \(C\).
Find
(i)
the coordinates of \(C\),
(ii)
the acute angle between \({{l}_{1}}\) and \({{l}_{2}}\),
(iii)
the vector line equation of mirror image of \({{l}_{2}}\) in \({{l}_{1}}\).
Responses