The line [latex]{{l}_{2}}[/latex] passes through [latex]A\left( 3,1,-2 \right)[/latex] and is parallel to the direction vector [latex]\left( \begin{matrix}7 \\15 \\1 \\\end{matrix} \right)[/latex].
[latex]{{l}_{2}}[/latex] intersects [latex]{{l}_{1}}:\mathbf{r}=\left( \begin{matrix} -12 \\ -22 \\ 11 \\\end{matrix} \right)+\lambda \left( \begin{matrix}4 \\ 4 \\ -7 \\\end{matrix} \right);\lambda \in \mathbb{R}[/latex] at [latex]C[/latex].
Find
(i)
the coordinates of [latex]C[/latex],
(ii)
the acute angle between [latex]{{l}_{1}}[/latex] and [latex]{{l}_{2}}[/latex],
(iii)
the vector line equation of mirror image of [latex]{{l}_{2}}[/latex] in [latex]{{l}_{1}}[/latex].